
Processing Rank-Aware Queries in P2P Systems

Katja Hose, Marcel Karnstedt, Anke Koch, Kai-Uwe Sattler, and Daniel Zinn

Department of Computer Science and Automation, TU Ilmenau
P.O. Box 100565, D-98684 Ilmenau, Germany

Abstract. Efficient query processing in P2P systems poses a variety of
challenges. As a special problem in this context we consider the evalu-
ation of rank-aware queries, namely top-N and skyline, on structured
data. The optimization of query processing in a distributed manner
at each peer requires locally available statistics. In this paper, we ad-
dress this problem by presenting approaches relying on the R-tree and
histogram-based index structures. We show how this allows for optimiz-
ing rank-aware queries even over multiple attributes and thus signifi-
cantly enhances the efficiency of query processing.

1 Introduction

Schema-based Peer-to-Peer (P2P) systems, also called Peer Data Management
Systems (PDMS), have recently attracted attention as a natural extension of
federated database systems which are studied since the early eighties. PDMS
add features of the P2P paradigm (namely autonomous peers with equal rights
and opportunities, self-organization as well as avoiding global knowledge) to the
virtual data integration approach resulting in the following characteristics: each
peer can provide its own database with its own schema, can answer queries,
and is linked to a small number of neighbors via mappings representing schema
correspondences. However, the expected advantages of PDMS like robustness,
scalability and self-organization do not come for free: In a large-scale, highly
dynamic P2P system it is nearly impossible to guarantee a complete and exact
query answer. The reasons for this are among others possibly incomplete or
incorrect mappings, data heterogeneities, incomplete information about data
placement and distribution, and the impracticality of an exhaustive flooding.
Therefore, best effort query techniques seem to be more appropriate. By “best
effort” we mean that we do not aim for exact results or guarantees but instead try
to find the best possible solution w.r.t. the available local knowledge. Examples
of such query operators are among others similarity operations, nearest neighbor
search, top-N as well as skyline operators.

However, even if we relax exactness or completeness requirements we still
need estimations about the error rate. In case of top-N queries this means that
we give a probabilistic guarantee that x percent of the retrieved objects are
among the top N objects that we would get if we asked all the peers in the
system.

Assuming an astronomical application scenario with XML data from sky
observations and XQuery as the common query language, a typical query would
ask for astronomical objects that match a condition to a certain degree. For
instance, a researcher could query the 10 stars closest to a given sky position as
shown in the following top-N query:

for $s in fn:doc("sky.xml")//objects

order by distance($s/rascension, $s/declination, 160, 20)

limit 10 return ...

Here, distance is used as a ranking function and limit restricts the result set
to the first N elements returned by order by.

Though one can easily combine multiple ranking functions it is often difficult
to define the weights for the individual attribute rankings in order to determine
the global rank. For this purpose, a more feasible operator is the skyline operator
[1] returning the set of those points that are not dominated by any other point1.
For example, a query asking for the brightest stars close to a given sky position
could be formulated as follows:

for $s in fn:doc("sky.xml")//objects

skyline of distance($s/rascension,

$s/declination, 160, 20), max($s/brightness)

return ...

Of course, the skyline operator can also be combined with the limit clause in
order to restrict the size of the result set.

In order to process such queries in P2P systems in an efficient way, appro-
priate strategies are needed that reduce the number of queried peers as well
as the size of the transferred (intermediate) result sets. The contribution of this
paper is twofold: (i) we present a novel routing filter capturing multidimensional
data summaries and (ii) we discuss strategies for processing top-N and skyline
queries in P2P systems by exploiting these routing filters.

2 Multidimensional Routing Indexes Based on the QTree

Before presenting techniques for realizing the operators motivated in the previous
section we will describe the principles of query processing in P2P systems. As
sketched in the example in Section 1 we assume peers to export their data in
XML and to be able to process queries based on XPath. We further assume the
existence of correspondence links between pairs of peers representing schema
mappings that we can use for query translation.

A first but naive strategy would be flooding the network, i.e., asking all the
peers that are available in the P2P system. Of course, this works but results in
high execution costs. These costs can be reduced by minimizing the number of
asked peers. In P2P systems this is usually done by applying routing indexes [2,
3] for routing the query to only those peers that are most likely to contribute
1 A point dominates another point if it is as good as or better in all dimensions and

better in at least one dimension.

to the final result. For this purpose, we use the concept of routing filters, as
presented in [4]. These routing filters cover both schema and instance level and
are based on one-dimensional histograms for numerical data.

2.1 Routing Indexes

In general, routing indexes represent summarized information about the data
a peer can provide. Thus, situations occur where we cannot exactly determine
whether the indexed peer actually provides query relevant data or not. Conse-
quently, in addition to reducing message volume and the number of round-trips
(our algorithms are restricted to only one round-trip), further cost reduction
can be achieved by not forwarding the query to such ‘questionable’ peers. This
results in taking the risk of ‘missing’ some ‘good’ data items. The risk that the
strategy takes can be quantified and output to the user as a guarantee for the
result. In [5] we have presented a strategy that provides probabilistic guarantees
for one-dimensional top-N queries. Due to limited space we will not discuss this
approach more detailedly.

Having routing filters for one-dimensional queries based on one-dimensional
histograms, using histograms for the multidimensional case seems to be the nat-
ural consequence. But as also discussed in [6] one-dimensional histograms are
insufficient to adequately capture the necessary information about data distri-
butions in the multidimensional case. However, as the main motivation for his-
tograms is to anticipate the number of data items for selection and join queries,
it is likely that one bucket covers a large area that contains only few data items
and many buckets are used for approximating an area containing a large num-
ber of data items. Though this is a good approach for anticipating selection
queries, it is not very clever for processing search queries like top-N and skyline.
In that case it makes a big difference, if and especially where single data items
are located in a bucket. Thus, we have developed a data structure (QTree) as a
symbiosis of histograms and R-trees. It fulfills the following demands: (i) pro-
viding information about attribute correlation, (ii) being resource-adaptive and
resource-efficient in terms of required disk space, (iii) being efficient in construc-
tion, maintenance and modification in terms of CPU cycles.

2.2 QTree-based Routing Indexes

(a) Raw Data

ROOT

A

B

A1

20

A220

C

B1

B2

20

(b) Topology

ROOT

A C B

A1 A2 B1 B2

(c) Graph View

Fig. 1. QTree

Each node in a QTree corresponds to a multidimensional rectangular bound-
ing box. Just like in R-trees, a child’s bounding box is completely enclosed in the
box of its parent. Leaf nodes are represented by ‘buckets’ containing statistical
information about those data points that are contained in the bucket’s bound-
ing box. The smallest buckets consist of only one point. In the following, we
will consider buckets that only provide the number of data points as statistical
information, though it is also possible to store mean value or other measures
like standard deviation in a bucket. Each QTree has two parameters: (i) fmax

maximum fanout, (ii) bmax maximum number of buckets. bmax limits the total
number of a tree’s buckets and thus its size and memory requirements. Fig. 1
illustrates a two-dimensional QTree with the following parameters: fmax = 3,
bmax = 5. Fig. 1(a) shows the original data, Fig. 1(b) the QTree’s bounding
boxes, and Fig. 1(c) the QTree with its buckets and inner nodes.

The QTree represents the basis of the routing filters (QRoutingFilters) that
we will use in the next section to process multidimensional top-N and skyline
queries. A QRoutingFilter describes the data of all neighboring peers in just
one index structure. The root node of a QRoutingFilter has one child for each
neighbor of the filter owning peer. The data of each child is represented by a
QTree and subsumes not only the data of the neighbor itself but also the data
that is accessible via this neighbor within a specified hop count distance. The
main benefit of maintaining the data altogether consists in the fact that the
number of buckets for each neighbor can be chosen (even altered) dynamically.

3 Processing Multidimensional Top-N Queries

This section presents an algorithm based on QRoutingFilters that allows for
efficiently processing top-N queries in P2P systems. Considering a peer’s local
data as well as the buckets of its QRoutingFilter we can efficiently determine
the subset of neighbors that provide relevant data.

W.l.o.g. let us assume that the score value (that is assigned to a data item
by the ranking function) has to be minimized. Let smax(B) and smin(B) denote
the maximum and minimum scores that any point in bucket B might have.
Furthermore, let count(B) denote the number of data points in B and Ball the
set of all buckets. The basic principles of the top-N algorithm are:

– determine a set Bsuff ⊆ Ball so that the worst score s is minimized and the
following equation holds:∑

Bi∈Bsuff

count(Bi) ≥ N , s := max
Bi∈Bsuff

smax(Bi)

– based on the worst score s determine all buckets Badd ⊆ Ball \ Bsuff that
might contain data items that have a better score than s:

Badd := {Bj ∈ Ball \Bsuff | smin(Bj) < s}

– Btop−N := Bsuff ∪Badd

Based on Btop−N, the top-N algorithm is defined as follows:

1. Calculate the top-N result considering all local data and all the buckets of
the routing filter

2. Forward a top-K query to all neighboring peers p owning buckets in Btop−N,

where K := min
{

N,
∑

p owns Bi
count(Bi)

}
3. Receive the answers of those neighbors and combine their results to a pre-

liminary top-N result that is either sent to the query’s sender or displayed
to the user

p1

p2p3

4
B

4

A

10C

5
D

5

Ep4

(a) Algorithm

Local Data: p2, p3, p4

R 1

R 2

R 3

A

B

C

p1

D

E

(b) QRoutingFilter

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000
 9000

 10000

 0 1000 2000 3000 4000 5000 6000 7000

S
en

t D
at

a
S

iz
e

Number of buckets in QRoutingFilter

N=1
N=10
N=50

N=100

(c) Total Message Volume

Fig. 2. Top-N Algorithm using QRoutingFilters

Fig. 2(a) illustrates an example of our top-N algorithm: Assume we are looking
for the top 10 elements near the asterisk. Fig. 2(b) shows the corresponding
QRoutingFilter. p2, p3, and p4 are local data items, hence they are not indexed
by the filter. In the example, buckets A and B (each containing 4 data items), p1,
and p2 would be sufficient to provide the top 10 elements: Bsuff = {A, p1, p2, B}.
The worst-case score for any point in Bsuff is visualized as a circle around
the asterisk. Badd contains bucket C since this is the only bucket that might
provide better data items than Bsuff . Considering Btop−N := Bsuff ∪Badd only
neighbors 1 and 2 have to be queried whereas no query has to be forwarded to
peer 3.

Experimental Evaluation. For evaluation we analyzed the influence of the
size that each routing filter is granted on the number of asked peers as well as on
the total network traffic. Based on the attributes rahour (right ascension of the
observation) and dedeg (declination of the observation) of our astronomical test
data we calculated 3-dimensional x,y,z -coordinates using a fixed distance of 1000
as radius. Thus, all objects are located on the surface of a sphere. Together with
the vmag (stellar magnitude in the V system) attribute we built 4-dimensional
QRoutingFilters for each peer. The maximum number of buckets in our experi-
ments varies whereas fmax is set to 10. All our top-N queries randomly choose
a point on the sphere and minimize the sum of the Manhattan distances to the
chosen point and to the maximum of vmag.

We also varied N in our tests. The results of our tests are shown in Fig. 2(c).
The total number of data points sent through the network is shown as a function
of bmax. The more elements are asked the more data has to be sent. Larger
routing filters significantly reduce the network traffic. These results perfectly

match our expectations. However, the total number of involved peers could only
be reduced significantly when allowing a high number of buckets.

4 Skyline Queries

The main idea of our strategy for processing skylines based on QRoutingFilters
is to generalize the “dominates” relation � in a way that it can be applied not
only on data items but also on arbitrary buckets A and B:

A � B :⇔ a � b ∀a ∈ A,∀b ∈ B

Single data items are interpreted as buckets with no extension. Based on this
relation it is possible to calculate a skyline over the local data of a peer, enriched
by all buckets of the QRoutingFilter. For this purpose � over buckets can be
determined using the idea of a worst and a best data item. If items aworst ∈ A
and bbest ∈ B can be constructed such that

∀a′ ∈ A : a′ � aworst and ∀b′ ∈ B : bbest � b′

then
A � B ⇔ aworst � bbest

The following fact directly leads to an algorithm for processing skyline queries
in P2P systems: All buckets containing data items that are elements of the
resulting skyline are elements of the skyline over buckets. The reason is that if
an arbitrary bucket B contains a point b that would be part of the overall skyline,
there cannot exist any other bucket A that dominates B. Assuming that such
an A exists leads to a contradiction: All possible elements in A had to dominate
all possible elements in B - thus, also b had to be dominated by all elements in
A. Furthermore, as A is not empty, there exists at least one element a ∈ A. So
we have found an element a for that a � b holds. This is a contradiction to: b is
part of the resulting skyline. The skyline algorithm for each peer can be defined
accordingly:
1. Calculate the skyline over the local data and all buckets of the routing filter
2. Forward the query to those peers corresponding to the buckets of that skyline
3. Combine the peers’ answers to a preliminary skyline that is sent back or

displayed to the user
In order to further reduce the data volume that is shipped back during query
execution, the data of some buckets is sent along with the query: those, that
are likely to dominate a huge amount of the receiver’s data. In order to choose
these “most selective” buckets, one has to determine how many data items each
bucket dominates. Calculating this exactly would be quite inefficient, so we only
count for each bucket A how many elements are thrown out of the result skyline
because of A. We use a nested loop algorithm for local skyline processing. Before
each loop all buckets are sorted decreasingly according to the number of buckets
they have already thrown out of the skyline. Thereby, those buckets that have
already thrown out a huge amount of data are tested first. Consequently, “se-
lective” buckets become even more “selective”. The data of those buckets that
superseded the most data items of the corresponding peer is forwarded to the

selected neighbor peers. This data consists of a bucket’s worst point since this
is all information the receiver has to know about a bucket.

Fig. 3(a) shows an example of a skyline over buckets, the corresponding
routing filter is shown in Fig. 2(b) with p2, p3, and p4 being local data items.
Assuming that both dimensions are to be minimized, buckets A, B, C as well
as p1 and p2 are members of the resulting skyline. The reason is that only the
following dominations occur: A � p3, C � E, C � p4, p2 � p4, B � D, and
B � p4. Notice that A � p2 because a point in the bottom left corner of A would
dominate p2. Furthermore, A � C since it might be possible that A only has
data items that are located left of C. As a result the query has to be forwarded
to only neighbors 1 and 2.

A

B

p1

p2

C p3

E

p4D

MIN

M
I
N

(a) Algorithm

 0

 20

 40

 60

 80

 100

 1 10 100 1000 10000

A
sk

ed
 P

ee
rs

Number of buckets in QRoutingFilter

with QTreeFilters
naive approach/ simple pruning

(b) Asked Peers

 0

 100

 200

 300

 400

 500

 600

 700

 1 10 100 1000 10000

Se
nt

 D
at

a
Si

ze

Number of buckets in QRoutingFilter

with QTreeFilters
naive approach
simple pruning

(c) Total Message Volume

Fig. 3. Skyline Algorithm using QRoutingFilters

Experimental Evaluation. In our skyline tests we analyzed the total number
of points that was sent through the network in order to answer a query. Like in
the top-N experiments we varied the number of buckets for the QRoutingFilters.
We queried the skyline over our astronomical test data using the Manhattan
distance as ranking function. For each query we randomly chose a point P on
the sphere and a vmag value. Whereas the distance was to be minimized the
vmag value was to be maximized. The resulting skylines had an average of 10
data items. The approach like stated above uses QRoutingFilters for routing the
query efficiently and sends the “most selective skyline points” along with the
query. We used a threshold of 1 what means that all those skyline points that
dominated at least one other data point are sent along with the query. In Fig. 3
this strategy is referred to as “with QRoutingFilters”. It is compared to two other
approaches: naive and simple pruning. Naive means that the network is flooded
and each peer sends its local skyline to the initiating peer which then processes
the final result. The simple pruning approach is based on the same principle but
the skyline is already checked for dominance by those peers that forward the
answer to the initiating peer. Thus, the answer is pruned by forwarding only not
dominated skyline points.

Simulation results are shown in Fig. 3(b) and Fig. 3(c). The sum of all points
that were sent through the network is displayed on the axis of ordinate whereas
QRoutingFilter sizes are displayed in a logarithmic scale on the abscissa. The
naive and simple pruning approaches do not differ significantly because pruning
the answer results reduces costs only a little. Using routing indexes, especially

QRoutingFilters, on the other hand can effectively reduce the network traffic:
A filter that occupies not more than 100 buckets almost halves the amount of
sent data volume compared to a strategy without filter usage. Although these are
good results w.r.t. the network traffic the number of asked peers starts decreasing
only for large filter sizes (1600 and more buckets per peer), see Fig. 3(b). In order
to further decrease the number of asked peers we are working on probabilistic
algorithms that relax correctness and completeness requirements.

5 Conclusion

In this work we followed two main goals: processing rank-aware queries while re-
ducing the number of involved peers as well as the amount of data sent through
the network. We introduced strategies for achieving both of these goals and fo-
cused on the evaluation of a novel data structure called QTree. A QTree combines
histograms with the advantages of R-trees. We have shown that the utilization of
this structure allows for processing multidimensional top-N and skyline queries
efficiently on numerical data. Main open issues and primary content of our cur-
rent and future work are:
– Approximate query answering techniques, as they promise much more effi-

ciency than always trying to provide exact answers.
– Details of the QTree which are in the first line the construction and mainte-

nance of this innovative data structure.
– How to support rank-aware queries based on string data? This includes find-

ing an index structure that efficiently represents strings, is easy to maintain,
and supports lookups for arbitrary strings.

– How to support arbitrary combinations of attributes? This involves combi-
nations of numerical data and string data.

Further aspects, but not in the primary focus of our current work, are the support
of limited knowledge in P2P systems and a comparison of QTrees to multidi-
mensional histograms.

References

1. Börzsönyi, S., Kossmann, D., Stocker, K.: The Skyline Operator. In: Proceedings
of ICDE 2001. (2001) 421–430

2. Crespo, A., Garcia-Molina, H.: Routing Indices for Peer-to-Peer Systems. In: Proc.
Int. Conf. on Distributed Computing (ICDCS 2002), Vienna, Austria. (2002) 23–34

3. Petrakis, Y., Koloniari, G., Pitoura, E.: On Using Histograms as Routing Indexes
in Peer-to-Peer Systems. In: Proc. DBISP2P 2004. (2004) 16–30

4. Karnstedt, M., Hose, K., Stehr, E.A., Sattler, K.: Adaptive Routing Filters for Ro-
bust Query Processing in Schema-Based P2P Systems. In: IDEAS 2005, Montreal.
(2005) 223–228.

5. Hose, K., Karnstedt, M., Sattler, K., Zinn, D.: Processing Top-N Queries in P2P-
based Web Integration Systems with Probabilistic Guarantees. In: Proc. WebDB
2005. (2005) 109–114

6. Babcock, B., Chaudhuri, S.: Towards a robust query optimizer: A principled and
practical approach. In: Proceedings of SIGMOD 2005. (2005) 119–130

