
Query Routing and Processing in
Schema-Based P2P Systems

Marcel Karnstedt Katja Hose Kai-Uwe Sattler
Department of Computer Science and Automation, TU Ilmenau

P.O. Box 100565, D-98684 Ilmenau, Germany

Abstract

Recently, the peer-to-peer (P2P) paradigm has emerged,
mainly by file sharing systems such as Napster and Gnutella
and in terms of scalable distributed data structures. Due
to the decentralization, P2P systems promise an improved
robustness and scalability and therefore open also a new
view on data integration solutions. However, several design
and technical challenges arise in building scalable P2P-
based integration systems. In this paper, we address one of
them: the problem of distributed query processing. We dis-
cuss strategies of query decomposition and routing based
on different kinds of routing indexes and present results of
an experimental evaluation.

1. Introduction

Peer-to-peer (P2P) systems open new views on a wide
range of problems, e.g., for data integration purposes, as we
have shown in [7]. In such systems there is no global know-
ledge: neither a global schema nor information of data dis-
tribution or indexes. The only information a participating
peer has is information about its neighbors, i.e., which peers
are reachable and which data they provide.

An important issue in the context of schema-based P2P
systems is efficient query processing. Because of the lack of
global knowledge, e.g., about data distribution, query plan-
ning is much more difficult than in centralized systems. In
the worst case queries can only be answered by flooding the
network with a query resulting in the same problems as al-
ready discussed for file sharing systems (e.g., high overhead
/ bandwidth requirements, fragmentation of the network be-
cause of the necessity to limit the number of hops etc. [10]).

In this paper, we address this problem by investigating
strategies for routing and distributed processing of queries.
The remainder of the paper is organized as follows. Based
on the brief introduction of the underlying data and distribu-
tion model as well as the query model in Section 2 we clas-
sify possible processing strategies in Section 3. The routing

approach is introduced in Section 4. For the implemented
strategies we performed a comparison in terms of query ex-
ecution cost as well as to determine the impact of the im-
provements. The results of this evaluation are presented in
Section 5. After a discussion of related work in Section 6
we conclude the paper and point out to future work.

2. Data & Query Model

In the following we assume XML as the native data
model for all peers, i.e., the schema of each peer is ex-
pressed in the form of a DTD or XML Schema. Besides
schema definitions we have to express correspondences
between schemas. For this purpose, several possible ap-
proaches exist. The most powerful way would be to use
an XQuery-based view mechanism or to invent a dedicated
mapping language. We use three main operations (equiva-
lence, child-of/part-of, transformation) to express the cor-
respondences. The model is shortly illustrated in the exam-
ple in Section 4. For a more detailed description we refer to
[7].

For query formulation we assume a subset of XQuery
corresponding to XPath with joins. However, because in this
paper we focus on query rewriting and evaluation strategies,
we use a simple set of XML algebra operators for represent-
ing queries. Due to the lack of a standard XML algebra we
use our own notation which is inspired by the work of [11].

An important issue is the performance of query evalua-
tion. Using a naive flooding in combination with a time-to-
live parameter of query messages (in order to avoid over-
loading the network) allows only to contact a limited num-
ber of peers and therefore may lead to incomplete results.
Thus, it is important to restrict the number of “visited” peers
to the relevant set. Ideally, one would use complete schema
and distribution information. However, because this is con-
trary to the P2P paradigm we have to find a trade-off be-
tween required knowledge and performance loss. Thus, in
the following sections we discuss appropriate strategies and
their impact on query evaluation performance.

3. Query Processing

The two basic approaches when processing queries in
distributed systems aredata shippingand query shipping
([8]). If all data necessary to compute the result is shipped
to the initiating peer and all operators are applied at that side
this is called data shipping. In the query shipping approach
the operators are applied at the peers where the data resides.
Only data that may not be processed further is shipped to the
requesting peer. Former works outlined that the query ship-
ping approach outperforms data shipping in terms of mes-
sage number and volume in large distributed database sys-
tems if no caching is present (e.g., [4]). As we for our part
examine large scale P2P systems where the peers, for now,
do not utilize caches, for the rest of this paper we focus on
the query shipping approach.

In our implementation query execution plans are repre-
sented byplan operators (POP)using a graph-based model.
We query other peers by sending query plans that are cloned
and modified by the peers providing the according data.
This approach is similar to the one presented in [9]. Our
algorithm for the query shipping strategy is not complete-
ley listed here, but the central part of it, a procedure called
process-POP(). This procedure is called by a peer in order
to start the actual query processing. An abridged version is
shown in Figure 1.

Input :
POPq

Output :
q filled with data

1 /* fill with local data */
2 forall neighbor peersP do
3 if data-known-to-peer(q, P) do
4 /* send a message toP in order to processq*/
5 od
6 od
7 if found-one = falsedo
8 /* query all neighbours */
9 od
10 /* apply joins etc. */
11 /* send plan back to initiator */

Figure 1. Procedure process-POP

While applying the procedure locally several messages
are sent to the neighboring peers. These messages are used
to ask the connected peers to further process the query in
parallel. After receiving such a message a peer starts its
local process-POP()with the provided parameters, while
the initiating peer continues to run his procedure. In line
3 we takerouting indexesinto our considerations. We will

describe the functionality of the proceduredata-known-to-
peer() together with main aspects and problems we are
faced when using routing indexes in Section 4. At this point
it is important to realize that we only query peers we are ex-
pecting to provide data. In the case of flooding, e.g., if we
have no schema or distribution information available at all,
we simply assume each peer is able to provide data. The
call of the procedure returns the according boolean values.
In the case we have information available but are not able to
determine any supporting peer, we get back to flood the net-
work.

4. Query Routing

When a peer is processing a query it could need infor-
mation about the quality of the data other peers can return.
If no information is available a peer can only flood the net-
work, which means to query each connected peer. This re-
sults in a very high amount of messages and a huge data vol-
ume sent through the network. As a consequence we need
methods to route a query, despite the limited information
available at each peer. The problem of routing is to decide
which of the known peers is most suitable for answering a
query. We userouting indexesto do this. A routing index
is a data structure that allows to route queries only to peers
that may store the queried data. Therefore the data stored
at each peer must somehow be associated with data iden-
tifiers. Each peer builds its own indexes, assigning to each
established connection the data retrievable using that con-
nection. As a consequence of the characteristics of P2P sys-
tems, these indexes must somehow be limited in their hori-
zon. If the horizon is not limited they degenerate to a data
structure representing global knowledge. In this case main-
tenance tasks will not be performable.

In our implementation we use a kind ofcompound rout-
ing indexes[3]. In contrast to this work we are indexing el-
ements not only on instance level, but also on schema level.
Indexing on schema level means the data is identified by the
XPath expressions describing the objects. On instance level
we refer to the physical objects actually stored, using ac-
cording filter predicates. An entry of the index is formed by
a path expression defining the element, calledcategory, an
id of the peer the connection is assigned to and two coun-
ters. Thecardinalitycounter denotes how many data objects
are provided,compoundedover all peers reachable when
querying the peer identified by the id. The second counter,
called#peers, denotes the number of peers providing data
according to the category.

The horizon a routing index should be limited to is im-
plemented using ahop count. The hop count dedicates the
distance in number of hops that peers may reside away from
the local peer. Raising the value to a maximum we will get
back to use global knowledge. Implementing a hop count

category predicate cardi- #
(schema level) (instance level) nality peers

painting - 520 4
painting/title - 520 3

painting/artist artist=’Monet’ 100 1
painting/artist artist 6=’Monet’ 420 2
painting/person - 210 2
p./person/name - 210 2

p./person/country - 210 1
p./person/birth [@date<’1800’] 132 1
p./person/birth [@date ≥’1800’] 78 1

.

Table 1. Example of a compound routing in-
dex at peer P2

of 1 will limit the indexes to reflect only the locally defined
correspondences. The resulting horizon comprises only the
directly connected neighbors.

Table 1 illustrates a part of the routing index built at peer
P2 using a hop count of 2 (here it is the part according to
the connection toP1). To improve readability ’painting’ is
abbreviated to ’p.’ in the longest paths. It is indicated how
the correspondences are used when building the indexes.

The proceduredata-known-to-peer(), in which we refer
to our indexes, is omitted here. If no index is defined we as-
sume that we want to flood the network. In this case the pro-
cedure always returnstrue. The rest of the procedure can
be summarized in three sentences: If any unnest operator
is found the procedure returnstrue if the queried path is
indexed. If any selection operator is found in the operator
tree thentrue is returned if the queried path is indexed and
the comparison of according predicates returnstrue, too. If
none of these is found,falseis returned.

Open questions mainly involve building and maintain-
ing the indexes. These are aspects of our current research.
At the moment also coherency as well as changes in the in-
dexed data are not supported.

Example

PY

PX

PZ

2P

routing using RI

2
P

horizon of
correspondences
defined at

potential routing

peer connection

using RI

potential peer
connection

routing using
flooding

P1

P4

P3

Figure 2. Subset of the example network

For illustration purposes we consider a simple scenario
where the autonomous nodesP1 . . . P4 form an information
system integrating information about work of arts. These
four nodes are integrated in a P2P manner by defining the
following bidirectional correspondences:

1. (P1)//painting≡ (P2)//object

2. (P1)//painting≺artist=name (P3)//person

3. (P2)//object≺title=name (P4)//item

In the following we present a small example in order to il-
lustrate the procedure of query processing and routing. Fig-
ure 2 shows a subset of a P2P network which includes the
mentioned peers and correspondences as well as some more
peers not described in detail here. The circle surrounding
peerP2 symbolizes the horizon of knowledge deduced from
the locally defined correspondences, complying to routing
indexes using a hop count of 1. All peers located outside
that circle are the peers we may only efficiently route our
query to if we use the defined indexes. Imagine a queryQ
initiated at peerP2:

Q: σ[object]person/country=’Netherlands’(µ[⊥]//object(P2.xml))

WhenP2 applies the locally defined correspondences it
recognizes that all neighbor peers butP1 cannot provide
any according data. Using a routing index with a hop count
greater than 1 it will also recognize that the part of the
schema unknown toP2 itself, which isperson/country, is
somehow supported by a peer reachable using the connec-
tion established toP1. P2 transformsQ into Q′:

Q′: βpainting,object(σ[painting]person/country=’Netherlands’(
βobject,painting(µ[⊥]//object(P2.xml))∪
µ[⊥]//painting(P1.xml)))

Finally the data provided byP2 is inserted into the ex-
ecution plan ofQ′ and it is sent toP1 for further process-
ing. Without having the index defined there arise two possi-
ble approaches:

1. flood the network in order to retrieve data according to
the unknown schema parts

2. only contactP1, because it is the only peer provid-
ing data which we know about, and hope it will know
about the unknown schema

If the correspondence toP1 would also not exist we would
have to decide whether to flood or to stop processing at all.
In the picture the thick arrows indicate the directions we
would route the query if we have defined indexes with a hop
count high enough. The dashed ones correspond to possible
mappings we have not listed here. The thin dashed arrows
symbolize the way the query takes if we decide to flood the
network.

At P1 the known correspondences are applied again.
Recognizing the data provided byP3 the transformed query
that is sent toP3 could now look like:

Q′′: βpainting,object(
cpainting,[painting]title,[painting]artist,[⊥]person(
onartist=name ((βobject,painting(µ[⊥]//object(P2.xml))
∪µ[⊥]//painting(P1.xml)),
σ[person]country=’Netherlands’(µ[⊥]//person(P3.xml)))))

At each peer other possibilities to transform the query
are conceivable, an imaginable modification in our exam-
ple is the placement of the selection operator. Here general
aspects of dynamic query optimization get indicated.

Investigating the known correspondencesP3 cannot find
any further mapping possible to apply.P3 adds the local
data, executes final operations and sends back the query
plan holding the result data. Again the thick dashed arrow
indicates how the query gets routed if another correspond-
ing mapping would exist.

5. Evaluation

Floo
ding

HC
8

HC
7

HC
6

HC
5

HC
4

HC
3

HC
2

HC
1

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

strategy (HC: hop count)

nu
m

be
r o

f m
es

sa
ge

s

(a) Number of messages

Floo
ding

HC
8

HC
7

HC
6

HC
5

HC
4

HC
3

HC
2

HC
1

0

10

20

30

40

50

60

70

80

90

100

strategy (HC: hop count)

pe
rc

en
ta

ge
 o

f d
at

a

(b) Percentage of data

Figure 3. Comparison of routing indexes us-
ing different hop counts

In order to preliminarily evaluate the benefits of the dif-
ferent query processing and routing strategies we have im-
plemented a testing environment. The data distributed over
the relatively small network of peers is based on plays of
Shakespeare ([1]). The network is formed by 40 peers es-
tablishing randomly chosen bidirectional connections be-
tween them. The bidirectional correspondences between the
peer-schemas were defined manually. We are also investi-
gating possibilities of generating these mappings using a
(semi-)automatic rule-based algorithm. Using a querymix
of 17 queries initiated at 4 different peers in the network we
have tested a total of 68 queries. Measured values are the to-
tal number of messages generated and sent through the net-
work as well as the percentage of data actually retrieved (we
are able to retrieve the complete data if we flood the net-
work). The time needed to answer a query is not expressive
in our simulation and therefore not captured. The simula-
tion environment was implemented using Java. The behav-

ior of the peers is simulated using Threads. We have to omit
a detailed analysis of the achieved results, because we are
short in space. Thus we limit to a short conclusion at the
end of this section.

In our first tests we wanted to evaluate the impact of rout-
ing indexes on schema level using different hop counts. The
results are shown in Figure 3.HC x indicates the strategy
using a routing index on schema level with a hop count of
x. The results we achieved by flooding the network are cap-
tured additionally.

HC 8 HC 7 HC 6 HC 5 HC 4 HC 3 HC 2 HC 1

0

250

500

750

1000

1250

1500

1750

2000

2250

SL­RI SL­IL­RI

strategy (HC: hop count)

nu
m

be
r o

f m
es

sa
ge

s
(a) Number of messages

HC 8 HC 7 HC 6 HC 5 HC 4 HC 3 HC 2 HC 1

0

10

20

30

40

50

60

70

80

90

100

SL­RI SL­IL­RI

strategy (HC: hop count)

pe
rc

en
ta

ge
 o

f d
at

a

(b) Percentage of data

Figure 4. Comparison of routing indexes with
and without instance level

In the next tests we wanted to check the benefit of in-
stance level indexes. If information about distribution of
data is complete, as we ensured in our environment, we ex-
pect a high benefit and possible missing of relevant data
to be minimal. The results we achieved are shown in Fig-
ure 4.SL-RI is short forSchema-Level-Routing-Indexand
denotes indexes defined only on schema level,SL-IL-RI
stands forSchema-Level-Instance-Level-Routing-Indexre-
spectively and denotes the strategy using indexes on schema
and instance level.

HC 8 HC 7 HC 6 HC 5 HC 4 HC 3 HC 2 HC 1

0

500

1000

1500

2000

2500

3000

3500

4000

4500

SL­RI SL­IL­RI SL­IL­RI & FINR SL­RI & FINR

strategy (HC: hop count)

nu
m

be
r o

f m
es

sa
ge

s

(a) Number of messages

HC 8 HC 7 HC 6 HC 5 HC 4 HC 3 HC 2 HC 1

0

10

20

30

40

50

60

70

80

90

100

SL­RI SL­IL­RI SL­IL­RI & FINR SL­RI & FINR

strategy (HC: hop count)

pe
rc

en
ta

ge
 o

f d
at

a

(b) Percentage of data

Figure 5. Comparison of routing indexes with
use of FINR

In Section 4 we mentioned the problem that we en-

counter if the used index indicates that none of the neigh-
bors may provide according data. If we stop processing at
this point we could miss some important data. A simple
approach to solve the problem is to query all neighbors,
which corresponds to flooding again. We call this approach
“Flooding If No Route”,FINR for short. In order to evaluate
a possible benefit from the instance level indexes we distin-
guished between indexes on only schema level (SL-RI) and
on schema and instance level (SL-IL-RI) again. The results
of this test are shown in Figure 5.

The preliminarily results presented in this section per-
mit a simple statement: Routing indexes are very powerful
in order to process queries more efficient. The indexes allow
to take routing decisions independently from knowledge of
the complete network by providing knowledge about the
data of peers up to a certain horizon. In this way they pro-
vide peers withpartial knowledge, improving routing by
far without having to collectglobal knowledge, thus they
are predestinated to be used in P2P systems. The most in-
fluencing factor is the used hop count, interacting with the
achievable performance as well as the amount of retrievable
data and the effort of maintaining the indexes. Defining in-
dexes on instance level additionally to indexes on schema
level can improve performance even more, but strongly de-
pending on the amount and character of information avail-
able apriori. Methods to evaluate the quality of results us-
ing a certain hop count are essential as well as strategies to
improve these results if they are not satisfying. One possi-
ble approach to this is to use FINR, but strategies that per-
form better are desirable.

6. Related Work

The state of the art in distributed query processing is pre-
sented in the survey [8]. In this work there is no special
concern about P2P systems. Special concern on schema-
based P2P systems is spend in [2]. The Edutella system is
based on a super-peer backbone and schema-aware routing
indexes. The problems arising in distributed query process-
ing are shifted to the super-peers. No mediation takes place.

Routing indexes especially for P2P systems are de-
scribed in detail by [3]. There are many alternative ways
of doing this sort of job, e.g., distributed hash table ap-
proaches (DHT), as in [5].

In [9] Mutant Query Plansare presented. This is a tech-
nique very similar to our implemented query shipping tech-
nique. In this work neither decomposition or parallelism,
nor data translation or integration takes place.

7. Conclusion

Efficient query processing is – beside others - one of
the main challenges in P2P-based data integration systems.

The decentralized nature of P2P systems makes it difficult
to directly use well-known processing strategies from dis-
tributed database systems. In this paper, we have investi-
gated the essential problem of query routing in P2P scenar-
ios under the assumption of limited local knowledge about
schema and data placement. We have outlined the possible
impact o routing indexes on schema level as well as on in-
stance level in such a scenario. Open questions we have en-
countered are including index maintenance and the choice
of an optimal hop count, reflecting the horizon of avail-
able knowledge. We ran some tests to preliminarily eval-
uate our approach. However, this is only the first step to-
wards a distributed P2P query engine. So far, we have ig-
nored query costs and cost-based decisions about alternative
query plans. Choosing an appropriate cost model and man-
aging up-to-date cost information in a P2P system is part of
our ongoing work. Furthermore, the highly dynamic and un-
predictable nature of a P2P system requires adaptive tech-
niques [6] which we plan to address in our future work, too.

References

[1] J. Bosak. Shakespeare 2.00, 1999. The plays of Shakespeare,
marked up by Jon Bosak
available at metalab.unc.edu/bosak/xml/eg/shaks200.zip.

[2] I. Brunkhorst, H. Dhraief, A. Kemper, W. Nejdl, and
C. Wiesner. Distributed Queries and Query Optimization in
Schema-Based P2P Systems. InInternational Workshop on
Databases, Information Systems and Peer-to-Peer Comput-
ing, Berlin, Germany, Sep 2003.

[3] A. Crespo and H. Garcia-Molina. Routing indices for peer-
to-peer systems. InProc. of the 28 tn Conference on Dis-
tributed Computing Systems, July 2002.

[4] M. J. Franklin, B. T. J́onsson, and D. Kossmann. Perfor-
mance tradeoffs for client-server query processing. InPro-
ceedings of the SIGMOD Conference, pages 149–160, 1996.

[5] L. Galanis, Y. Wang, S. R. Jeffery, and D. J. DeWitt. Locat-
ing data sources in large distributed systems. InProceedings
of VLDB 2003, 2003.

[6] A. Gounaris, N. W. Paton, A. A. A. Fernandes, and R. Sakel-
lariou. Adaptive Query Processing: A Survey. InBNCOD
2002, pages 11–25, 2002.

[7] M. Karnstedt, K. Hose, and K.-U. Sattler. Distributed Query
Processing in Schema-Based P2P Systems with incomplete
schema information. InProc. of the int. Conf. CAiSE (Work-
shop DIWeb’04), Riga, Latvia, To appear, 2004.

[8] D. Kossmann. The State of the Art in Distributed Query Pro-
cessing.ACM Computing Surveys, 32(4):422–469, 2000.

[9] V. Papadimos and D. Maier. Mutant Query Plans.Informa-
tion and Software Technology, 44(4):197–206, April 2002.

[10] J. Ritter. Why Gnutella Can’t Scale. No, Really, 2001.
www.tch.org/gnutella.html.

[11] S. Viglas, L. Galanis, D. DeWitt, J. Naughton, and D. Maier.
Putting XML Query Algebras into Context. submitted for
publication, 2002.

